
Abstract—Relatively simple low-resolution models are needed
by human planners and probably by intelligent machines.
Ideally, these should be high-level models developed in a
multiresolution, multiperspective modeling (MRMPM)
framework.  That, however, is often difficult.  We ask whether
statistical meta modeling (i.e., development of response
surfaces) can provide good low-resolution models if one
already has a credible higher-resolution base model.  We ask
how meta models compare if they are derived from pure
statistical methods, from a phenomenology-rich theoretical
approach, or from some synthesis.  To sharpen issues and
generate insights, we have worked through a particular
problem in detail.  Our conclusions are generally negative
about “purist” statistical meta models, which have serious
shortcomings in explanatory power, in variance, and in ability
to predict and explain the relative importance of contributing
variables.  Purely theoretical approaches, however, are often
very difficult and not transparent.  Fortunately, a synthesis of
methods is feasible and likely to be fruitful.  Some tentative
principles are that: (1) a thoughtful “first-order” theoretical
analysis conducted with MRMPM principles in mind can
identify “aggregation fragments” to be used as variables in
generalized regression and (2) this can also suggest structures
to impose on the meta model that will assure dependences
known to be important.  Imposing such a structure can, e.g.,
assure that a meta model will predict failure of a system if any
of its critical components fail.  The theory-enhanced statistical
meta model may also be much better than a naive statistical
meta model in representing a system’s performance when a
competitor is systematically looking for a circumstances that
will defeat the system.  In that case, variables that are
mathematically independent may be said to be strategically
correlated.  Although tentative, the suggested principles
appear consistent with experience in theoretical and
experimental physical science.

Index Terms— Multiresolution modeling, variable resolution
modeling, response surfaces, meta models, model abstraction,
planning models.

I. INTRODUCTION

This paper addresses the problem of how to develop low-
resolution, meta models as part of a multiresolution family.
In particular, it compares approaches based on
phenomenological modeling with methods based on

                                                          

statistical methods.  It then suggests some steps toward
synthesis.
The paper begins with some background on multiresoluiton
modeling and the reasons meta models are needed.  It then
discusses the ideal for phenomenological multiresolution
modeling, which involves pure hierarchies.  Although that
ideal can sometimes be realized with considerable payoff,
reality is often much more complex.  As a result,
developing phenomenology-driven multiresolution families
proves quite difficult.  This causes us to be interested in
shortcuts, such as using statistical methods to develop meta
models.  The remainder of the paper is about our efforts to
think about how statistical methods and more
phenomenology-rich methods relate to each other and
whether there is the possibility of combining features of
both.  We describe our initial hypotheses on the matter, the
research approach we have taken so far, and observations to
date.

II. BACKGROUND

A. Planner Needs for Low Resolution Models

It is well recognized by now that intelligent systems need
planning modes in which they are able to recognize and
compare alternative courses of action.1-4  This planning
requires a broad form of testing—i.e., the courses of action
need to be evaluated for a wide range of circumstances.
This is the domain of exploratory analysis, rather than the
domain of refinement.  The objective is often the classic
goal of satisficing—finding a course of action that will “do
the job,” not necessarily optimally, but well enough.
It follows that humans, at least, typically need low-
resolution models for planning.  This is not simply a matter
of saving time or money, but rather due to the human need
to understand the basis for choosing one course of action
over another, and to communicate that rationale to
others—perhaps to persuade, or perhaps to convey a clear
sense of mission intent.  This need might not exist if a
perfect model existed with perfect data, and if everyone
accepted whatever the model said.  That situation, however,
rarely arises in higher level planning.
A corollary is that the need for simple, low-resolution
models will continue to exist regardless of increasing
computer speed.  The need is fundamental.  It is tied to the
limits of cognition and curse of dimensionality.
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It might be speculated that intelligent machines can be
different on such matters.  They have no emotional need for
explanation and they may not need to explain their
reasoning in simple terms—at least when communicating
with other intelligent machines.  Nonetheless, it seems
likely that when the intelligent machines have imperfect
models, limited data, and uncertainty about prospective
operating conditions, they will suffer the same problems of
bounded rationality addressed famously by the late Herb
Simon5 a half century ago.  If so, they will also need simple,
low-resolution models.
This said, even those who gravitate toward simple, low-
resolution models will agree that to be useful, such models
need to be grounded in reality.  It is frequently easy to
concoct plausible and attractive simple models, but such
models are often flawed—so much so as to be counter
productive.  Sound “simple” models should be rooted in
higher-resolution work.  Thus, to conclude that the planning
function requires simple models leads in due course to the
requirement for multiresolution modeling (MRM).  Indeed,
it is not just a matter of resolution.  Substantially different
representations of reality (different “perspectives”) may be
essential in order to understand different facets of the
underlying phenomenon or to make effective use of diverse
forms or empirical data.  Thus, what is needed is actually
multiresolution, multiperspective modeling (MRMPM).
For the remainder of this paper we shall focus on MRM, but
the more encompassing concept of MRMPM is important to
keep in mind.
Having established motivation, let us now discuss what is
involved in MRM.

B. Idealized Multiresolution Modeling: the Role of
Hierarchies

For a phenomenologist, at least, the natural way to proceed
in developing an MRM family is to design hierarchically.6.7

Figure 1 illustrates schematically an idealized construct.
One has only a few top-level variables (those in the low-
resolution model), but each of these is determined by
higher-resolution phenomena.  The next level of detail will
be a model with more variables and it, in turn, will depend
on events at still higher detail.  In Figure 1, the resulting
hierarchical trees are pristine.
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Figure 1—Idealized Multiresolution Modeling
Why is this “ideal?,” or at least very desirable?  For one
thing, given such a multiresolution family, one can start at
the top and then—as necessary—zoom to a higher level of
detail, perhaps on only one part of the problem.  For

example, one might thoroughly understand variable A, but
variable B might be uncomfortably abstract.  If so, one
could go down one or more levels of detail until the
variables used are comfortable and sufficient—perhaps
because they are explicitly tied to familiar empirical
information.  This zooming, however, would be on an as-
necessary basis.  Reasoning could be accomplished at as
high a level, and with as few variables, as needed for
comfort.
Such a multiresolution family would relate the microscopic
and macroscopic worlds.  It would provide a strong sense of
“understanding” and the capacity to use diverse types of
information.  This relating of levels would not just be a
matter of hand-waving.  Instead, Figure 1 suggests that to
establish good values for the higher-level variables when
they are used as independent variables (inputs), one should
conduct systematic experiments exercising the next higher-
resolution model to generate appropriate “averages.”  Such
experiments should be conducted over the entire n-
dimensional space spanned by the independent variables of
the higher resolution model.  In some contexts, that is
appropriately called a “scenario space.”
Interestingly, the result of such calibration should generally
be to produce stochastic variables.  That is, if the higher-
level (lower-resolution) model has two variables X and Y,
and if we want to establish what reasonable values of X and
Y might be, we should ordinarily expect that X and Y will
need to be stochastic because of hidden variables.
Such idealized modeling is possible in many cases—if one
thinks about doing it.  Figure 2 shows an example drawn
from recent defense work. 8It shows the design of a module
dealing with command and control issues in the evaluation
of long-range precision fires.  This model allows users to
input directly the impact time of a weapon (measured
relative to the ideal time of arrival at a target).  This is often
a useful quantity to parameterize and vary.  However, the
model also allows the user to work with more detailed
variables as inputs.  The second level of detail involves the
descent time of the weapon (the time between when the
weapon does its final target acquisition and tracking, when
it is overhead, and when the weapon impacts) and the
standard time-of-arrival error measuring the variation due
to imperfect guidance system.  At the most detailed level,
the user must input the weapon’s flight time, the delay
between the receipt of sensor data on targets and the time
that the data was valid, and so on.
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Figure 2—An Example of MRM Design
Idealized hierarchical design is unusual.  If we look at an
existing model and depict its relationships graphically, a
more typical picture would be as in Figure 3.  Here we see a
good deal of cross talk and breakdown of the hierarchies.  A
common observation here is “Everything is connected to
everything.”  Often, it is not evident how to simplify to
something more like Figure 2.
This may be puzzling to those who know about and accept
the principle that natural complex adaptive systems
typically manifest the principle of nearly decomposable
hierarchy:5  that is, when viewed in the right way, the
system can be decomposed into modules that interact only
weakly.  Such a decomposition is typically not evident
when viewing the structure of existing complex models.
Nor is it evident in freshly built models designed bottom-up
with the common ethic of achieving verisimilitude.  Indeed,
it is not evident even in models built top-down if the
designer is taking pains to include interactions that appear
important.  There are at least two points here.  First, people
only seldom design models with an image such as Figure 1
as a goal.  Second, even if they try, they will find that their
diagrams become muddled, as in Figure 3.
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Figure 3—A More Typical Model Schematic

The solution, it might seem, is to recognize that
approximations can eliminate the ugly interactions.  Indeed,
if one is willing to introduce approximations, then it is often
possible to move much closer to the MRM ideal. And, if
one does this right, one will rediscover the principle of
nearly decomposable hierarchy.

C. Intrusion of Reality

Unfortunately, another fundamental reality intrudes here.
The critical approximations are often valid only in limited
domains.  As one moves from one domain to another, the
appropriate approximation may change drastically—not just
through a change in some constant, but in the analytical
structure.  For example, aerodynamic drag may vary in one
regime in proportion to an object’s speed, whereas in
another regime it may vary inversely with that speed.  Yes,
approximations are essential, but we should not expect to
find simple, stable, universal approximations.7

The significance of this is that—once again—anyone
attempting to develop a phenomenology-based MRM
design in a given problem should not be surprised to find
difficulties—difficulties great enough to comprise a PhD
dissertation.
How, then, do we humans “get along” in this complex
world?  In fact, we do reasonably well.  However, we are
constantly changing the frames in which we operate (the
approximate depictions of the world that allow us to reason
and act).  We do this so seamlessly that we often are not
even aware that we have changed frames.  The attribute of
being able to carry along contradictory ideas at the same
time—most celebrated in discussion of eastern philosophy,
but actually a universal attribute—is arguably a
manifestation of this.
What about machines?  How will intelligent machines
develop the diverse frames and skills to adopt the right
frame at the right time?  This remains very much a research
question.
To complete our background discussion, let us summarize
by observing that while simple, low-resolution models are
needed, and while they need to be rooted in a
multiresolution framework, achieving one is often difficult.
Learning how to achieve MRM structures efficiently would
be very desirable.

III. CAN STATISTICAL META MODELING PROVIDE A

SHORTCUT?

A. General Issues

The difficulties to which we have alluded so far are all tied
to attempts to build phenomenological models—i.e.,
models rooted in theory and attempting to describe causes,
effects, and other relationships. Suppose, however, we back
away from this and ask whether an alternative approach is
possible.  The most obvious is statistical meta modeling, the
very purpose of which is to develop simple “models” that
represent well the behavior of systems on which some kind
of data exists.  The system in question may be a physical
system and the data may be empirical.  Alternatively, the
system may be a detailed model (e.g., a simulation of a



system) and the “data” may be outcomes of simulation runs.
In some instances, the detailed models are large, complex,
impenetrable, fragile, and slow.  In other cases, they may be
virtuous in all respects other than requiring expensive care
and feeding.  Typically, the base models are imperfect, with
both known limits of applicability and errors.
In all of these cases, one can apply well known statistical
methods to generate meta models.  If a reasonably well
accepted detailed model exists, why should we not adopt
these methods to generate the simple, low-resolution
models needed for planning?
This is the question we have been studying.  We have
sought to understand better the strengths and weaknesses of
the phenomenological approach and the approach of
statistical meta modeling.  And we have sought
opportunities for synthesis.

B. An Aside

One reason that pursuing this matter was of interest is that it
highlights a substantial cultural divide, which can be
characterized—with literary license—as follows.  Suppose
we ask whether using statistical methods to generate simple
low-resolution models for planning is sensible.  The
responses from Cultures A and B might be::

Culture A: “Of course they make sense; all that matters
is representing behavior of the base model.  I don’t
even want to understand the black box.” (statisticians,
some operations researchers, many social
scientists,…?)
Culture B: “No no no; the simple model should be a
model, not some lousy regression.  I’d rather calibrate a
model that makes sense than work with a mysterious
black box.” (physical scientists, engineers,…?)

Culture A and Culture B even mean quite different things
by the word “model.”  Fortunately, translations are
possible.

IV. APPROACH

In our first assault on the issue, we proceeded on two
tracks.  On the first track, we theorized in the abstract, using
simple examples to help, but without attempting anything
rigorous.  The purpose was to generate hypotheses for
experiments.  For our second, experimental, track, we
decided to work though a particular nontrivial example
drawing on a currently interesting military problem with
which we were familiar.  For that second track, we decided
to

1. Construct (by embellishing an existing model) a
complex, nonlinear model that we would treat as
correct

2. Use standard methods to develop statistical meta
models

3. Throw different degrees and types of theory at the
problem—providing “hints” before applying the
statistical apparatus.

4. Observe, compare results with differing levels of
theory, compare results with expectations from
initial notions, and learn.

More ambitious theoretical work would certainly be
possible, but this hands-on experimentation was suitable to
our state of knowledge and the limited time available for
the research (in between our principal research efforts).
Although our example involved a specific military problem
(assessing military capability of alternative military forces
to halt an invading army by using long-range fires in the
form of aircraft and missiles), we convinced ourselves that
the example would illustrate many generic issues.
The base model (called EXHALT-CF)9 has input variables
such as the number of resources always available (forward-
deployed shooters, such as fighter aircraft), the rate at
which those can be increased (deployment rates), the times
at which partial and full rates of increase would be initiated
(related to strategic warning, time of decision, time at
which access to bases is granted, etc.), and so on—to
include the effectiveness of the resources (kills per shooter-
day) and the size of the task to be accomplished (the
number of threat divisions, etc.).  An important output is the
distance that would be moved by the attacking army before
it is halted.  The meta model, we would hope, would be
able to predict this distance from a much smaller set of
inputs.  The inputs could be a subset of the original model’s
inputs or a set of composite variables such as the sum of
two high-resolution inputs (or, realistically, something
much more complex).

V. ISSUES AND HYPOTHESES

Before beginning the experimental phase of our study, we
developed a set of issues and hypotheses to guide our
exploration.  These included the following:

• Black-box models (such as statistical meta models)
are less useful to decision makers than
phenomenologically motivated models with clear
physical interpretations.  Thus, if they are to
compete effectively, they must be accurate and
reliable.

• Statistical meta models may be relatively accurate
“on the average,” but may be seriously misleading
for predicting sensitivities and variation.

• Statistical meta models may be seriously
misleading on crucial “system issues” (to be
discussed below).

• Some statistical methods may yield expressions
with meaningful physical interpretations by
“discovering” composite variables.

• The potential advantages of models based in
theory (i.e., phenomenological models) may not be
realized in practice because the resulting analytical
forms turn out to be ugly, complex, and opaque.

• A synthesis of approaches may be desirable: one in
which theory is used to guide application of
statistical tools.

The first of these reflects our ingoing attitude (statisticians
might say bias).  In candor, our effort has not really been
devoted to finding new statistical methods to improve
accuracy.  Many first-rate researchers work on such matters
and a considerable literature already exists.  Instead, our



real objective is suggested by the last item in the list: the
belief that a synthesis of theory-based and statistical
methods might prove practical and attractive.  As indicated
by the middle items, we also were suspicious about how
meta models developed with relatively standard
methods—could be on issues of interest to us.  Particularly
interesting to us here was the “system issue.”  By this we
mean that many important problems are about assessing the
capabilities of systems with multiple individually critical
components.  Such systems depend for their success on all
of these critical components separately proving successful.
Not all systems are of this type, but many of interest are.
Analytically, to say that a system depends on each of
subsystems A, B, and C being successful suggests that
overall capability depends on something more like a
product of capabilities, CACBCC, than a sum.  Figure 4
shows in the representation of a fault tree the structure of
the halt problem on which we focused for our example.
This fault-tree representation highlights the system
character we have in mind: success in achieving an early
halt of an invasion requires success in each of the four
components indicated by branches.
We would not expect normal linear regression to generate
good meta models when such system effects are present.
Even generalized regression methods, which consider
various nonlinear composite variables, typically do not
include triplet products.  This justified our suspicion, but
proved nothing because in practice statistical models often
do much better than one would expect a priori.  Further,
dependences among variables, such as represented by
product terms CACBCC can sometimes be reasonably
approximated by a sum of terms such as CACB,,CACC, and
CBCD. We were also impressed by the common lore among
statisticians that pair wise interactions among variables are
typically sufficient for meta modeling—that diminishing
returns sets in quickly in considering interactions.  This lore
was in conflict with our theory-based reasoning, but
merited respect as we constructed hypotheses to explore.
Finally, several advanced statistical methods (e.g., cluster
methods) appeared to merit investigation if time permitted.

VI. SELECTED OBSERVATIONS

With this background of motivation and approach, let us
now describe briefly some of the observations we have
made to date, based on our experiments—which should be
viewed more as developing a case history and making
observations about it, than as something rigorously
systematic.

A. Success of the Statistical Meta Models

We ran 1000 cases of our base model, generating them
randomly from the input space of the model by representing
the input variables with random distributions.  We then
developed a series of increasingly sophisticated statistical
models while avoiding insertion of phenomenology.  The
meta models were based, in increasing order of
sophistication, on:

• Conventional linear regression of all the input
variables

• Modestly extended linear regression in which the
variables used as the basis for linear regression
were composites of the original input
variables—composites motivated by looking for
consistency of dimensionality in many of the
variables regressed.  In particular, we constructed a
number of composite variables with the
dimensions of distance.

• More generalized regression using as the basis not
just the original input variables {Xi}, but also the
various product terms {XiXj}.

As expected, the linear regression did not do particularly
well (although better than one might expect), but with the
embellishments, we obtained fair agreement with the
predictions of the actual base model.  This conclusion,
however, applied only so long as we focused on “standard”
measures, such as R2 or, better, root mean square error.
Root mean square error varied from about 60-100 km,
depending on which statistical model we attempted.  Since
the goal was to achieve a halt distance less than 100 km,
this degree of variation was not really
satisfactory—although, again, it was better than one might
expect given the complexity we believed existed in the
original model.
When viewed in a more fine-grained way, results were
worse.  For example, some of the coefficients had
nonsensical signs and the errors of individual cases made
no sense.  But why should they have made sense when the
“models” used had little physical content?
Most important, the statistical meta models did not do well
when used to compare the relative importance of variables.
A basic reason for this is that the statistical meta model is
created by reducing average error over the entire input
domain. However, in many problem areas—such as
military problems where one has a thinking adversary, or an
economic domain in which choices are not made randomly
but to maximize profit—small “corners” of the input space
can be sought out.  For example, an adversary may
minimize warning time and invade rapidly and use various
tactics to degrade the defense’s capabilities—even if
temporarily.  Predicting outcomes for a corresponding war
might mean running the model for a set of inputs that would
be regarded as extremely improbable if they were
independent and random.  One way to think about this is to
refer to the inputs as mathematically independent, but
strategically correlated.
It is easy to understand how a purely mathematical effort to
assess the relative importance of variables can run into
trouble.  Such an effort might, for example, measure the
average effect of a 1% change in a given variable when
averaged over all of the rest of the input space.  If that
variable was extremely important only in one “corner” of
the space, that fact would be lost as the result of the broader
averaging.
Another way to think about the problem is to look at graphs
comparing predictions of the meta model with the base
model.  Not uncommonly, the meta model will do poorly in
one domain and poorly (but with opposite sign in the error)
in another domain.  It will also do extremely well in some



domains and quite poorly in others, even though, on
average, it will do fairly well.  When one asks about the
validity of an approximation or the relative importance of a
variable in such a case, the result will be correct on average
but potentially quite misleading.
The problem, some might respond, was in considering too
large an input space.  In a sense, that is true.  However,
which “corner” of the space is of interest depends on details
of context that are difficult to predict in advance.
Nonetheless, this is the essence of the problem.

B. An Infusion of Theory

What happens, then, when we add bits of theory before
generating the statistical meta models?  Suppose, for
example, that a problem has three inputs X,Y, and Z.
Adding theory might be to assert that that meta model
should have the form C1XY/Z +C2X.  The composite
variables forming the dimensions for regression, then,
would be Q1 and Q2, where Q1=XY/Z and Q2=X.  We have
elsewhere called these “aggregation fragments.” suggested
by theory.  Linear regression could then be used to
determine the coefficients C1 and C2.  And, if one were
lucky, perhaps C2 would be small and the meta model could
be simply C1XY/Z.
In more realistic cases, of course, the base model might
have dozens of inputs and the composite variables might be
complex as well.  Further, it might or might not be possible
to use linear regression straightforwardly.  In the case we
worked in detail, for example, the form suggested by theory
involved Max and Min operators, which can cause trouble.
Tricks can often be applied, however, such as breaking the
data into groups and applying the methods of linear
regression on the groups separately, or ignoring the Max
and Min operators until after finding a regression model
and then applying the operators.  What is valid depends on
details of the problem.
What we learned from our experimental application of our
ideas was the following:

• Infusing the approach with theory-motivated
aggregation fragments may or may not improve
the meta model significantly if the only measure of
goodness is something like R2 or root mean square
error.

• However, the resulting meta model will at least
have pieces with understandable significance.
That is, its descriptive value will be higher.

• Further, the enhanced meta model may be more
accurate in predicting relative importances and
may help users avoid serious pitfalls.  If, for
example, one knows that it is the product XY/Z
that matters most (although X,Y, and Z may also
appear in the definition of some of the less
important composite variables), then that could be
quite useful in drawing valid conclusions–and
ignoring artifactual conclusions—about relative
sensitivities.  Also, if theory were to tell us that an

aggregation fragment Q1 = X i
i

n

∑ should be

important, then one could avoid the error of
concluding from a more naive meta model that the
individual variables {Xi} are unimportant.  That is,
the coefficients of a naive regression might be only
a third as large for each of the Xi, as that for, say,
Xn+1, but if n were 10, then Q1 would be more
important than Xn+1—if only one knew to look for
Q1.

• Most important, perhaps, our experiments
confirmed the potential value of imposing a
theory-motivated “system structure” on the meta
model.

To illustrate this trivially, suppose that we were interested
in the rate at which something could be detected from
searching an area.  Elementary theory would tell us that the
rate would depend on the product of search rate R and the
probability of detection when viewing an area that in fact
contains the item of interest.  At a more microscopic level,
there might be a great many variables such as the search
vehicle’s speed, time on station, turnaround time for
refueling and repair, search pattern, and so on.  Also, the
detection probability in the sense that we mean it might not
appear.  Instead, one might have inputs for the power and
aperture of a radar, its scan rate, the radar cross section of
interesting objects, the probability of recognizing that a
particular moving object was an example of the item in
question, and so on.  A linear regression of these variables
might produce something useful, but would not pick up the
right form.  If instead the meta model were assumed to have
the form RPd, where R was constructed from the search
vehicle’s attributes using even something as simple as
dimensional analysis, and where Pd was assumed to be a
product of the sensor attributes and target cross section (but
limited to 1), then the resulting meta model would be
guaranteed to have the characteristic that the search would
be predicted to be a failure if either R or Pd were too small.
That is, one would not make the mistake of predicting that
one could compensate for a very poor search platform by
upping the performance of the power and aperture of its
radar.
In the actual problem that we worked through
experimentally, the meta model that we concluded should
be tried based on theory had the form shown in the
equations below, where the independent variables were Obj
(the objective sought by the attacker, corresponding to the
distance from his border to a strategically important
destination), V (the initial movement rate of the attacker), ξ
(the number of attacker armored vehicles that the defender
must kill to halt the invasion), δmax (the number of kills each

defender shooter can kill each day using the best weapons
available), δB (the same quantity, but for a poorer weapon

available in large numbers), TSEAD (the time required to
suppress the attacker’s air defenses so that shooters can
operate effectively), Tx (the time at which shooters begin
their attack on the armored column), R (the rate at which
shooters deploy to the region), A0 (the number of shooters
present when the war starts), Amax (the maximum number of
shooters that can be in the theater), Nawpn (the number of



top-quality weapons), and Ω (the slowing of the invader’s

movement for each vehicle killed per day).
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Figure 4—Finding “Aggregation Fragments”
Details are not of interest here, but note that the theory-
motivated meta model is quite nonlinear and that it has
recognizable “system features” in that, for example, the
distance gained by the attacker can be large if it the
attacker’s size ξ is large or if the defender’s  per-shooter-

day effectiveness δ max or δB is low or if the defender has too

few shooters on average.  The form is not that of a simple
product because there are other complications, but that
“product” feature is prominent in the expression for the
composite variable D2.
D = Max[Min[ D2 − C1TdelayObj ] ,0 ]

D2 = C2
A

A A
+ C3

B

A B
− C4Ω

A = Min[N awpns SN a
, ] B = − A

A ≈ Min[ A0 + RT x + 1

2
R(TSEAD −Tx ),Amax ]

Without elaborating, let it suffice to say that this theory-
motivated meta model did spectacularly well—even
embarassingly so.  We say “embarassing” because the base
model  took months of work to develop, code, and debug,
and is in no way simple and transparent.  Nonetheless, the
underlying factors driving its results are largely those
summarized in the compact expressions above.  To
someone interested in this particular problem, the structure
of this expression and the various terms can be explained
clearly in a matter of minutes.
As one would expect, the theory-motivated meta model did
well when asked to predict sensitivities and relative
importances.
In our experience with this and vaguely similar problems, it
has proven possible to develop “smart” suggested meta
model forms with hours, days, or a few weeks of work,
rather than months.   To be sure, this requires shifting
mindsets from that often associated with procedural
programming to that like more traditional analytical
modeling—even with use of paper, pencil, and a
whiteboard.
In summary, our experiments tended to confirm the initial
hypotheses and to give them sharper meaning.  We can
hardly draw universal conclusions from such experiments,
but we are encouraged that the traditional methods of

mathematical modeling and statistical meta modeling can
be merged in developing  useful low-resolution models that
are reasonably suitable for the kind of high-level
exploratory analysis needed for both policy planners and
certain kinds of intelligent machines.

C. Other Observations

Finally, let us comment briefly on some issues that we had
found puzzling at the outset.  One of these was the common
belief among statisticians who generate meta models using
experimental designs to sample the results generated by a
physical system or base model that interaction effects can
typically be ignored beyond those of pairwise interactions.
The reason for this is probably just that the applications are
limited to problems in which a single nicely behaved
“response surface” applies.  If that is the case, then—by
analogy with Taylor’s theorem in calculus—one would
expect the quadratic approximation would often be
reasonably good.  However, in policy problems—including
the one that we used for our example—the non linearities
caused by thresholds of various kinds result in a more
complex and non monotonic structure.  No single response
surface suffices.  Furthermore, in problems with which we
are familiar the empirical data or realm of validity for the
base model is often quite limited.  It is important to be able
to extrapolate the meta model’s predictions well beyond the
region for which it was calibrated.  When this is so, it
should hardly be surprising that a theory-motivated meta
model (perhaps with various If-Then-Else constructions
distinguishing broad regions) can be far better than a more
naively generated statistical meta model.

VII. CONCLUSIONS

In summary, there is great potential in marrying the
techniques of statistical meta modeling with the insights of
theoretical, phenomenological, modeling.  The benefits of
such a synthesis are likely to be quite high when attempting
to represent systems with individually critical components
and complex systems with substantially different behaviors
in different regimes of their input variables, and in
predicting system behaviors for circumstances significantly
different from those for which one has empirical data.
The synthesis we are suggesting rejects the “purist”
approach of some statisticians, which is sometimes
characterized as “Let the data speak,” by which is meant
that one should explicitly avoid postulating a theoretical
structure to the model and instead see what the statistical
analysis reveals.  Such an approach has much to offer in
many problems, but not the ones we are addressing.  In our
problems, it usually pays to have theory.  The payoff is
quite high in terms of its cognitive benefits (related to the
model’s expanatory power), which may be even more
important than modest differences in the accuracy or
precision of prediction.   We believe that will continue to be
the case for strategic planning.  It may or may not be true in
the long run for robots in cases where the data available for
calibrating a meta model is massive and credible, but we
suspect that paucity and unreliability of data will plague



intelligent systems used in complex environments (e.g.,
planetary explorers rather than spot welders).
In attempting a synthesis of approaches, we suggest several
principles:

• Attempt to characterize the problem using the
methods of multiresolution, mutiperspective
modeling (MRMPM)—especially the method of
hierarchical or nearly hierarchical decomposition.

• Attempt to find meaningful simplified structures
by sharpening the hierarchicies—i.e., by
identifying approximations (perhaps case-
dependent approximations) that create  nearly
decomposable hierarchies.

• In doing so, however, be guided less by the
intuition or preferences of pure mathematics (e.g.,
independent events) than by the character of the
actual problem.  Worry about what we have called
“strategic correlations.”

• Attempt to characterize the problem “formally”
even if one cannot as a practical matter accomplish
the various computations implied.  Attempt to
structure the problem so as to “see” system
features where one knows they should exist, but
allow structurally for complications (e.g., even if
unusual, it may be possible for one component—if
present in quantity–to substitute for another
thought to be individually critical).

• Abstract from this theoretical work both
“aggregation fragments” and structure that can be
used to inform statistical meta modeling.

• Try to identify variables that are being short-
changed in the proposed structure and then avoid
using the meta model for predicting the
consequences of change in those variables, even
though the meta model depends on them.

We are nowhere near providing firm principles or recipes
for success, but we believe that the approach we suggest
will prove quite useful.  One reason for our belief here is
that the suggestions appear to be in some respects a
restatement—for a new context of inquiry—of methods that
have long been applied by physical scientists and engineers.
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